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"Let y, = @ + x|'8 te, i=1....n ... be a linear regression Lnodel.
; L .

where (x;) is a sequence of experimental points, i. e, known p-vectors, (e;) is a

sequence of independent random errors, with med(e|) =0,i=12 ..., Define the

minimum Lt-norm estimate of }(& 3:’)', by (A . an) to be chosen such that

u N\

sub b

Under quite general conditions on txi} and (e{), the strong consistency of the
mmumum L'—norm estimate is established.{f}l(ther, under an additional condition on
(x'], it is also proved that for any given ¢ > 0, there exist constant C > 0 not
depending on n, :tfch that

S

~ 2 - 2 2
Pla - all® + 118, - 8117 2 €}

< exp{-Cn}, for large n.
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1.Introduction.

o

- -
P

Consider the linear regression model

-
o

-
-

;' yi-a+x;g+ei. i=1, 2, ...
p (1.1)
0
b where { x = (x“, ce, xip)' },i= 1,2 ..., is a sequence of experiment points,
: i. & known p-vectors, E = (81, ce Bp)' is the regression—coefficient vector, and
=, e.e, are random errors. To estimate the unknown vector E based on the
,, observations Yyoroo ¥ @ popular method is the Least Squares (LS) method, which
N n
> takes B minimizing the sum of squares Z (yi - x’iB)2 as the estimate of B.
i=1 - ~
.
3 The merit of LS estimate is that it is easy to compute (being a linear
. . combination of Yoo ,yn), and that, in case where the random errors are
independently and approximately normally distributed, the LS estimate possesses
v many desirable properties. But these happy conditions cannot be taken for granted in
x" many practical applications. For example, in econometrics, there now exists a
b considerable body of evidence that attests to distributions with infinite variance
being a reality (distribution of income, behavior of speculative prices, distribution of
- firms by size etc) Even in cases where the error variance can reasonably be

assumed to be finite, the error distributions may have heavy tails, deteriorating the
performance of the LS estimate.

So it is under this background there has now been much interest in using

more robust methods, among which the L1—norm method is a forerunner. This

SO

n n
method seeks to minimize | |yi - x'isl instead of ly, = x'iB)z, and the
i=1 - i1 -
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minimizer Bn is taken as the estimate of . True. the caiculation of Bn is

PSR

considerable more complicated as compared with the case of LS estimate Bn, but,

since the successful establishment of the link between the L1—norm method and the

g w8 e 2

linear programming, the computing problem no longer presents a barrior in the face

of modern computing facilities.

Another problem is the sampling theory of the estimate. Since it is not likely

- i - > -

that a workable small-sample theory can be established, the asympototic theory is
of great importance. The first and foremost probiem in the asympototic theory is to

4 establish the consistency of this estimate under weak conditions.

2 The asymptotic theory of the L1-norm estimate is much more difficult as

compared with the Least Squares theory, owing to the mathematical difficulty of

-
-

working with the absolute value function. Huber (1981) proved a general theorem

concerning the consistency and asymptotic normality of a class of robust estimates

of linear regression coefficients, but the result does not apply to the L1-norm
estimate, since the absolute value function is not differentiable at zero. In recent
. years some authors, for example Oberhofer (1982), proved the weak consistency of-

the L1-norm estimate under rather strong conditions.

In this paper, we develop a method in dealing with the consistency probiem
of the L1-norm estimate which enables us to obtain general results concerning the
; strong consistency and exponential rate of the L1-norm estimate under very mild

conditions.

2. Formulstion of the Theorems.

A r D

in some applications it may be known in advance that the regression plane
passes through the origin, i. e a = 0 in model (1.1). In this case, according to the

; L1-norm criterion, the solution Bn of the minimization problem

L)
»,
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DIy, - xjB | =min T-ly, - x8l.
jt' 4 |-1 -~ B I=1 -~

ot gives an estimation of B. Define

‘ n
::‘ S = z X, X!,
"' - n i=1 ] I

H I : P, = the smallest eigenvalue of S ,

d, = max 1, |Ix 11 .. o]lx || 1,

0 where ||x|| denotes the Euclidean norm of vector x.

Theorem 1. Suppose the the following conditions are satisfied:

2
‘o 1) pn/(dn'ogn) + @,
2.1

’ 2) There exists constant k > 1 such that

k-
dn/n l -> o.

(2.2)

3 e.e g e independent random variables, and

Y med(ei) = 0, i=1, 2, ...

- 4) There exist constants C1 > 0, C2 > 0 such that
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P{-h<ei <o}3c2h.
(2.3)
P{o<ei<h}3c2h,
(2.4)
forali=1, 2 . andhe(O,C1).Thenwehave
lim En = E. a. s.
Nay®
Further, under the additional condition that for some constant M > 0
/d2 > Mn for large n
Pp/Cp = N0 9
(2.5)

5‘ converges to B at an exponential rate in the following sense: For arbitrary given

€ > 0 there exists constant C > O independent of n such that

P{||f:5n - Bl] 2 el

-Cn

<O0(e 7).

Theoretically spesking, the nonhomogeneous model (1.1) is merely a special
case of the homogeneous model y, = x’iB + e i =1 2 ..., in which first

element of each x is 1. Therefore, as a corollary, from Theorem 1 we c¢an obtain

~

an analogous result concerning the estimates a. 5\ of o B: We need only to

n
replace the matrix Sn = | xx by
[
=1
A V% % 1 ™ b ] j S 1%} O ) it A S A O A R P T I Ay B AT AT R E
W' d IR ..l“o o ..l':'. Tt TN :. A I L " ‘ Nl NN N A )

Ky

4, L0 AS R

\O N RS

r ¥ ¥~

Sy

e

g



e s T . v Iy, &t 18 grd ghitgvid gt o A AN At WL W TS ST KT 35  dp' e T TN IR UYWL WU T U

n N
n I x!
0 =1 !

(7N ]
[ ]

N n n

" I x. I x.x!
=1 ' = M

/

and define P, as the smallest eigenvalue of Sn. But, since Sn is a matrix of higher

(7

order as compared with Sn, it may be of some advantage to give the following

result

"a)

Theorem 2. Suppose that the we have model (1.1), and the conditions of

h n
! - -
Theorem 1 are satisfied, except that here we define Sn as } (x - xn) x. - xn)'
i=1
N _ n
2 where x = (1/n) [ x. then
E: =1
» ~
? lim ¢ =, a. s.
l: Ny
3
)
lim B =R, a. s.
. na® ~ -
Also, under the additional assumption (2.5) for arbitrarily given ¢ > O we can find
;'; constant C > O independent of n such that
v ~ -
) _ 2 + _ 2 2
_ Plle, - al|® + ||B, - 8|1 2 €7 :
B
N
' c
N < Ofe M.
4
q In this formulation, Theorem 2 is not a trival consequence of Theorem 1, and
/
,
A

J
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through the basic idea of proof are the same for the two theorems, some
important differences in detail emerge. Therefore we shall give the detailed proof of
both.

3. Comments on Conditions.

Before entering the details of proofs, we make some remarks concerning the

conditions of the theorems.

1. The first two conditions involve only the sequence of experiment points
{xi}, while the latter ones involve only the error sequence {ei}. in any theoretical
problem concerning the linear model (1.1), it is always desirable not to introduce

assumptions involving both simultaneously.

2. Conditions 3) and 4), taken together, guarantee the uniqueness of the
median of e, i =1, 2 .... Condition 4) stipulates that the random errors (e;s)
should not be "too lightly" distributed around the median zero. The requirement on
the uni.queness of median is reasonable in view of the “median-regression” character
of the model. As for the conditions (2.3) and (2.4), it is likely that they are not
necessary and further improvements are conceivable, yet it is easily seen that they

cannot be totally dispensed with.

Example 1. Take the simplest case in which we know in advance that g = 0.

In this case the Minimum L1-norm principle gives

an = med(Yl- R an)

as the estimate of o. Suppose that e.e > are mutually independent, e has the

following density function:

W Y R N T S W R e TR AT L FL TR I ORI NS TS T O R R
IR o) W R N ; 0‘!&'-\.. LR TGN '- oy ety - »

-

-

- W o W W

o -~



)';‘W & Fa

N

~ NI

7
.2
|x]7i%, 0 < |x| <i,
fi(x)' { =1, 2,
o, otherwise,
Then
' .2 .
P{eigl}-l/Z-l/(Zl), =, 2, ...

Denote by £ the number of those es for which vn < i < n and e > 1 An
application of the Central Limit Theorem convinces us that for given § ¢ (0, 1/2)

we have

P'{En >n/2} > §

for n sufficiently large. This implies that

P{an_>_ 1} > 8

~

for n sufficiently large, hence q is not a consistent estimate of q.
n

3. Conditions 1) and 2) regulate the behavior of the sequence of experiment
points {xn}. 2) stipulates simply that x_should not go to infinity “too fast’ as n

« A close inspection of condition 1) convinces us that this is also implied by 1)

Condition 1) requires that P, should tend to infinity with some rate. In the
case where {xi} is bounded, P, should tend to infinity at a rate faster than logn. In
the LS theory, under some general conditions (see Li(1984)) on the error sequence
{ei}, the strong consistency of LS estimates is guaranteed by requireing only IR
» This gives one the hope that condition 1) can be weakened to p > Whether

or not this is true remains an open question.

The point that "xn should not go to infinity too fast' is of interest as it
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reveals a difference between the L1-norm and LS criteria For LS estimate, in
general the faster x_ goes to infinity as n » =, the more likely is that it becomes
consistent. The following example shows that in the L1-norm case, going too fast

(of xn) to infinity may indeed render the estimate inconsistent

- O e

Example 2. Suppose that in model (1.1) p = 1, the random errors e v

, L independent, P{ei = 10i} = P{ei = —10i} = 1/6, and e is uniformly
)
' distributed over the interval (-1/3, 1/3} with density one. For convenience assume

that the true parameter values are ¢ = 0, B = 0. Let x = 10i, i=12 ....

Define the event En = {en = 10"}. Then P{En} = 1/6. It is readily seen that

when En occurs we have

LN ]

-

|ei -a- bxil > bx!On-], when |a| < 1/10 and |b| < 1/10,

and

1

n
n-
3: |ei - a - bx,| ‘53x10 .

i=1 i 'a=Q,b=

These two facts, taken together, give

P{ max (|&n|. Ianl) 2 1/10} > P{e } = 1/6.

So even weak consistency does not hold.

Example 3. This example shows that, even in the case that e. e, - are
independent and identically distributed, consistency may not hold in case P, tends to

infinity too fast

Suppose that in model (1.1) p=1, the true parameters o« = 0, 8 = 0, the

random errors are iid. with a common distribution P{ca1 = 10"} = P{e1 = -10k} =

TNy ) A T S I I R P SRR R UL R R o R P I N R LR I
Wy 48 c\“o'lo l. X ‘..‘ o, ‘ i A N \"' - ol * VR o . NS 2T e T T NP

39 o'
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1/kk+1)], k = 6, 7, . ... and e is uniformly distributed over (-1/3, 1/3) with

density 1. Let x = 10,i=1,2 ...

Define the event E = {|e | < 10", n/2 < i < n}. Then it is readily seen that

|
P(En) > e.2 as n » o Suppose that En does not occur and denote by in the first j
such that j > n/2 and |ej| > 10", then we have i <n An argument similar to that

employed in Example 2 gives us that max (|<JLI | IBI |} > 1/10. Therefore P{|a|| >

n n
1710 or IBiI > 1/10, for some i, n/2 < i < n} > P{E:} +1-¢62>0and . B)

is not strongly consistent

From a practical point of view it can be said that the conditions 1) and 2)
are reasonable and would be satisfied in most applications. An important case is that

{x} is bounded, or more generally, ||x || = oli/logi. and

lim Sn/n = A exists and positive definite.

Ny
3.1)
These conditions are satisfied when x.. xz, ... are iid samples of a random
vector x for which E(xx') exists and is positive definite.
4. Proof of Theorem 1.
The following lemmas will be needed in the proof.
Lemma 1 (Bennett) Suppose that ¢ v 4 , are independent random
n 2 n
variables with |£ | <b < o Let u = (1/n | EL and ¢” = (1/n) [ Varg. Then
]
i=1 i=1
for each ¢ > 0, we have
NS R T S N \;_-.:’~.:,-.:_-.',-.}‘.;-.:_-_'._-.'_,-.:_-.3_\:-_\}-.:_-.:_.-.'_\\:,-_\'. :.}:: R A .n"}}.-" N

\"I,\:,_
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n
P{| (\/n) g - u| > €}

i=1

< 2exp{-ne?/[2(c? + be) 1},
The proof of this lemma can be found in Hoeffiding (1963).

Lemma 2. Suppose that {ei}, i =1 2 ..., n are random variables .

satisfying the conditions 3) and 4) of Theorem 1. Also, let {a}. i =1 ..., n be a B

sequence of constants and a = max |ai|. Then there exist constants C > 0, and

15i%n :
€, > 0. depending only on a, C1 and Cz' such that .
\2

i

n 2 .i

P{iz:1 (|ei| - ]ei - ail) > -ean} 3

]

'

< 2exp{-CBz}, N

= n )

(4.1) o

4

2 _ o 2 ‘

where B = | a" .
n . i (

i=1 _

Proof. Without loss of generality, we can assume that a_ > 0, for each i = 1, .

. n. Note that (4.1) is -automatically true if a’ = 0. Thus we can assume that a > -

0. which implies that B: > 0. In case of a > Cl, we can suitably adjust C2 such o
.‘

that (2.3) and (2.4) are true for each i and h ¢ (0, a) A

Define £ = |e| - [e - a| It is easy to see that

A¢ %y "y

L)

- - - - , -y - . - R RN L T P A R T I AT I PO P . ® atp® g -
""\-"\"5"1}" '\"\-\" oA 0" #"\-" "\'r\u 1'.\" \"‘\- 'V'..V' LR LA Ny R OSAR S SN AL "\"'."‘\' NN LN 2,
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1

" a,, ife >a,

K Hence

l‘. < < *
P IEil—ai-a’

1A

Eg. < -aiP{ei 0} + aiP{ei > a‘i/z}.

- e o
o el m e oy

< -a,P{o<e, <a,/2} <-C a?/z.
i i i 2

]

Vargi < E{? < a?

) LoD

e Take €, = C2/4 and C = g2 /[201 + a ¢ )]. Using Lemma 1, we have
> 0 0

N
~ o 2

N P{ i.{1 £, 2 -e.B}
B

N

: n n 2
3 =PLO/n) | (g, - EE) 2 -(i/n) (] EL, + €8)}

=1 i=1

v

N

v <PLO/M T (€. - EL) > 682

; s n i_):1 £, = EL;) 2 g8 /n}

< 2exp{-n (e B2/m 2/[2(8%/n + 2’ 83/m 1}

N - P eO n n a tO n n

g 2

. - Zexp{-CBn}.

"
-
1 6

Pty rppe ~p - r . | PR P RN
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which comietes the proof of Lemma 2. i

Lemma 3. Maintaining the assumptions and notations given in Lemma 2, and

defining :
1, if ei > ai/2 3
'ﬂi -{ J
-1, if e <a,/2,
[} ] \
we have

o 2 2
P{] amn, >-e.B} < 2exp{-CB}.

=l

The proof runs largely along the same line as in Lemma 2. So the details are ,
omitted. '

Now turn to the proof of the theorem Without loss of generality we assume
that the true parameters 8§ = 0.

Fix €, 0 < € < 1, and define A = {B: ||B]| = €}. Split A intom =m

(]

parts A1, S Am such that the diameter of each part does not exceed e/nk. It is
esasy to see that this can be done with :

mem < (pn)pk.

Choosa srbitrarily a point Bt from each At, t=1,..., m. Define b:. = X;B(
b= max {|b|. 1} anda =b/b. Then we have |a | < 1 for each t and i N
t 1<i<n ti t ti ot ti v
Also, we have

2 o , 2
B, '-{1 2 = BiS By/b

SOt et L i N W L S VOSSN Y N A A e A R A A S N S A O A S R S O A Y
v_..,a'oo..v'l.o.t e IR "L ¥ o L X ot M ., X o Y 0 o

Ocn Wy 1Sy A
R UMY M U N N o N N
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2 pn/d: - @.

& Hence, by Lemma 2, we have, for large n,

n
PLT (el - le; = 8, D > -e)

i=1

v 2
PLT (legl - le; - a2 -eB, 3

i=1

1A

tA

-2 2 2
2exp{ CBtn} < 2exp{-Ce pn/dn}.

n
If BeA and [ (le] - Je - a |l <-e then

> i=1

>

*

3 "

- ‘21 ([eil - |ei - x;B/th)

) i= -~

: ; :

ST Uel-leg-agD+ I Ix@-8)Im,
= i= ~ -~

i < -¢g + ﬂdne/r'ok <0, for all large n.

‘ Here the last step follows from condition (2.2). Therefore, for all large n we have
‘
s
5 n n
P{] Je.| - min [ Je - x!g| 20}
- BeA' =1 '~
[, -~ t
B
LY
3
! "
: < P{i.{’ (le;| = |e; - a . > -¢€}
u.
4
l.
,I
)
s
*

N Ry Y O Ry % o M % Y T N LT N
ot Wit l't':’!':'t‘:’e‘l’:\"-".‘-‘:’:’:‘ﬂf‘v(h‘?". W, .0‘:’0 3 o':‘.l‘;' AAGH .:\,"o LIRS :‘:(& e, l\,l'b.o. ‘*\‘A\f " ‘

TR \.\’-.f-.",
B EalA el B BAal ]



14

< 2exp {-Cez pn/d:}
4.2)

where A; = {b:1B: B e At}
Now let & > 1. Define

1, if ei>ati/2
nti- . i=1,...,n

-1, if e < ati/z

A, = Ieil - lei - R'a;"

where a = x’iB, B e A’t . Let us consider the following cases. In each case, we

shall use the fact that |ati -a = |x B - Bt)l /b, < dne/nk = o(1/n). Here and in

the sequel, o{1/n) is uniform in t and i.
Case a. 8 2 aﬁ/2 > 0 and e < aﬁlz.
We have
a, = |ei| - |ei - 'il -’ -Na,
< el - le; -a. | - (&-1fa, - o(1/n))

- |ei| - |ei - ai| + (R =) (atin .+ 0(1/n))

ti
4.3
Case ». 8 > a"/Z >0.and e > a /2. :
[N |
"
Q
ClDINY LT o e - S S R SRR ] ‘ - NN WL g Y Y e S c % L% N L WAL NN
X ‘) '7 Sy '. LA ‘4 -l'a D <ot X J"',r ."::H.‘ .'- POIAD llm". ) "f."' ' Yo J‘n‘u' ; heYe)
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1 We have
i
B ;< le;l = leg - a ]+ (2 - Da,
'I
B
) - - -
b < |ei| |ei ail + (-1 (ati + 0(1/n))
AN
.. - |ei| - Iei - ai| + (2 -) (ati'nti +0o(1/n)),
“-:
& which shows that (4.3) is still true.
., Case c. 0>a/2>a ande >a/2
s, t = ' ti
5
N
& We have
s Ai-leil- |ei -ai|+ (9,-1)3i
X
- <le|l - e, -a |+ (2-1(a,, +o0(i/n)
- [ [ i ti
al - - - -
N |°i| |ei a;| + (-1 (a .n. + o(1/n)).
~
“
Hence (4.3) is still true for this case.
~ Case 0. 0 > a“/2 28 ande < aﬁ/z.
:
We have
: 8, < le |- le -a|+ (-]
7 < le;] - Je, - a, | + (-1 (Ja ;| + eC1/m)
K
'0
0' = - - -
) le.| - le, -a |+ (2 -1(a.n.+0(/n),
:. which also shows that (4.3) is true.
)
A

¥
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Case e |a| > |a |/2

In this case, we have that |a | < 2|a, - a| = oli/n) hence a = ol1/n.

" Therefore

B, = le;] - fe; - 23]

< |ei| - |ei - ai| + (2 - No(1/n)

- Ieil - Iei —a |+ @-1 (atinti + o(1/n)),
and (4.3) is still true.

Summing up the five cases, we see that

B, < ]e;] - e, -a |+ (& -Nla . n, +00/n)

Let l'l't = {2B: B € !\'t and 2 > 1}. By {4.2), (4.3) and Lemma 3, we have

n n
P{] |ei| - min | |ei - x;Bl > 0}
i=1 Ben{ i=1 -~
<P{L |e;| - min [ Je. - x:8| 2 0}
in1 BeAi i=1 ~
* P{'R 8Ny 2 7€l

1A

hexp {-Cczpn/d:} .

Oenote 1T = {28: B ¢ A ond & > 1}. Note that b 2 1. we have ntc I

m m
Aiso, {||B]|] 2 ¢} = U IS U . Hence we obtsin
- te ts 1

S . - Pt -tz T | Tt =y

T -
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i
X
R
N n n
A2
P e.| - min e, - x'B8| >0
(1 le;] L fe il 2o
a‘: -
)
1t
.::
e n n n
< I P{L Je.| - min [ |e. - x!g| 20}
i t=1 =1 Bell; =1 ' '~
»
{4
K
W
< hmexp{-Cezpn/di}
<
Iy
En,
'y < 4 (pn) pkexp{-Cezp /d%}
. - nn
at 4.4)
x’
\ which, together with {2.1) and Borel-Cantelli Lemma, implies that
o
- P{ 8 >g, i. 0.} =0
| Bl 2 € iv 0
b
Ay This proves the strong consistency of 5\ . Finally, the last assertion of the theorem
\
v follows directly from (2.5) and (4.4). The proof is concluded.
- Remark. If (3.1) holds, then condition (2.2) for k = 3/2 is fulfilled. If we
»
’ further assume that dn = ol/n/logn), then (2.1) is satisfied Also, it is easy to see
’ that (3.1) and the boundedness of dn imply (2.2) and (2.5) which guarantee the
L7
A exponential rate of the convergence of the L1-norm estimate. It may be noticed that
; -
b since in general we have p, < nd:, we cannot get a rate faster than Ole cn) from
\
y the proof of Theorem 1. In fact, under the assumption that 91, e g are
;:' independent and identically distributed, it can easily be shown that P{| |§n - Bl| 2
‘. €} cannot tend to zerc at a rate faster than Ofe ') (i e. P{| |5\ - Bl] 2 €} =
X Otgin) and ec"g(n) +0forany C> 0 asn o =
?:'
K
:
K
.A
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5. Proof of Theorem 2.

Without loss of generality, we can assume that @ = 0, B = 0.
- U
Given €, 0 < € < 1, and define
2 2 )
A= {(a B)': o’ +8'g =}, B
i
Spiit A into m = m  parts A g Am such that the diameter of each part does ¢
not exceed ¢/n® and that m <p + l)n)(p”’k = Con("”)k where C0 is a positive K
constant Choose arbitrarily a point (at, B't ) from At and define :
~ [
r
= ' = .
Pei = XiBy by = 123%, 5,1 f
,
I
&
\
Consider the following two cases.
;
v
Case 1. bt < €/4. g
]
Define a = a + b . Then we have
ti t ti a
'
f
|ati|5e+e/‘o52, i=1,...,n '
Arguing as in the proof of Theorem 1, we get \
J
t
n '|
P{ 5-21 (Jle, = e, - a.]) > -¢l ¢
R
9
\]
[y
‘-
@
: .9
B R R T R L S R T T A ST T raT Aty
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e L2
< 2exp{-C} a .t

i=1

and consequently

P{] |ei| - min I le.- 2(a+x;8)| > 0}
=1 (@,B') 'ep = -
%21

oo 2
< 2exp{-C{ ati}'

=1

Noticing that bt < €/4, we have

n

2 -I 2 [}
i_):1 ati- n(at + xn_B_t) + EtTnEt

> n(e/2 - e/W)? = ne?/t6.

Hence, by (5.1) and (5.2) we have

P{} le;| -  min L le;- L (a+x:B) | 2 0}
i=1 (0,B') 'eA, i=! -
“2>1

< 2exp{-Cn}.

Case 2. bt > g/4.

Define 8 = el + bn)/(4bt)‘ We have

e X X A7)

-----

5.1

(5.2)

(5.3)
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|ati| <€+ e/bh<5/b.

As before, using Lemma 2, we can show that

PL T (e - e, - a ) > -el

i=

< 2exp{- CX a 2
i=1 ti

“Pa A9a‘dts 4V Ata’

For (x. BY ¢ At, define a = ela + x’iB)/(4bt). As in the proof of Theorem 1,

we have
n n
P{] le.| - min =} le; - 2a.| 2 0}
i=1 (a,B") eA i=1

221

2

n
< hexp{-C | at

i=1

Noticing that E/Mbt) < 1, we have

{(le/‘obt) (o, B8')': (s B')' ¢ At. £ > 1}
O f{tla, B)': (a, B)' € Ao 2201

Hence, by (5.4) and (5.5) we obtain

P{z |e | - min ) |ei- z(a+x;s)| > 0}
-1 (a,B')’ €A, = -

21
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o 2
< bexp{-C | ati}

i=1

(5.6)
Since
o 20 2
T a,, = (e/4b )"} (a, + x!B,)
=1 T L3t t it
2 2, 2
> € /(16bt)§tTn§t > epn/(16dn).
we have, by (5.6},
n n ’
P{] le;| - min L le;- 2(a+x;B)| 2 0]
i=1 (a,B") ! eh, =1 -
21
< kexp{-Cp /dz}.
= nn
5.7)

where C > 0 is a constant independent of n, but may be taken as different value at

each appearance.

From (5.3) and (5.7), we finally obtain that

P{] le.| - min I le, - a-x!g| 20}
i=1 ! a +B'B2e j=1 ! ‘.

<L((p+ 1)n) (w])kexp{-Cpn/d:}-
(5.8

e

: 'f.r.r,y:.\'q" '-) :.r' ')-P{J"_,’.r\\-.\..r,'?.;,_:-ﬂ.r(- .f.r.r‘-:.r.r.r.r'r“‘r. 5 .'-‘.

-

v
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", In view of condition (2.1), applying Borel—Cantelli Lemma we get

an + 0, a. S.

X2 L

e

o, a. s.
En -

A

These prove the strong consistency of o and En . The last assertion of the theorem

follows from (2.5) and (5.8). The proof is complete.
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